Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism.

نویسندگان

  • Laura A Lavery
  • James R Partridge
  • Theresa A Ramelot
  • Daniel Elnatan
  • Michael A Kennedy
  • David A Agard
چکیده

While structural symmetry is a prevailing feature of homo-oligomeric proteins, asymmetry provides unique mechanistic opportunities. We present the crystal structure of full-length TRAP1, the mitochondrial Hsp90 molecular chaperone, in a catalytically active closed state. The TRAP1 homodimer adopts a distinct, asymmetric conformation, where one protomer is reconfigured via a helix swap at the middle:C-terminal domain (MD:CTD) interface. This interface plays a critical role in client binding. Solution methods validate the asymmetry and show extension to Hsp90 homologs. Point mutations that disrupt unique contacts at each MD:CTD interface reduce catalytic activity and substrate binding and demonstrate that each protomer needs access to both conformations. Crystallographic data on a dimeric NTD:MD fragment suggests that asymmetry arises from strain induced by simultaneous NTD and CTD dimerization. The observed asymmetry provides the potential for an additional step in the ATPase cycle, allowing sequential ATP hydrolysis steps to drive both client remodeling and client release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1

Hsp90 is a homodimeric ATP-dependent molecular chaperone that remodels its substrate 'client' proteins, facilitating their folding and activating them for biological function. Despite decades of research, the mechanism connecting ATP hydrolysis and chaperone function remains elusive. Particularly puzzling has been the apparent lack of cooperativity in hydrolysis of the ATP in each protomer. A c...

متن کامل

A novel N-terminal extension in mitochondrial TRAP1 serves as a thermal regulator of chaperone activity

Hsp90 is a conserved chaperone that facilitates protein homeostasis. Our crystal structure of the mitochondrial Hsp90, TRAP1, revealed an extension of the N-terminal β-strand previously shown to cross between protomers in the closed state. In this study, we address the regulatory function of this extension or 'strap' and demonstrate its responsibility for an unusual temperature dependence in AT...

متن کامل

Crystallization and preliminary X-ray diffraction analysis of Trap1 complexed with Hsp90 inhibitors.

Hsp90 is a molecular chaperone responsible for the assembly and regulation of many cellular client proteins. In particular, Trap1, a mitochondrial Hsp90 homologue, plays a pivotal role in maintaining mitochondrial integrity, protecting against apoptosis in cancer cells. The N (N-terminal)-M (middle) domain of human Trap1 was crystallized in complex with Hsp90 inhibitors (PU-H71 and BIIB-021) by...

متن کامل

The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis.

Hsp90, a dimeric ATP-dependent molecular chaperone, is required for the folding and activation of numerous essential substrate "client" proteins including nuclear receptors, cell cycle kinases, and telomerase. Fundamental to its mechanism is an ensemble of dramatically different conformational states that result from nucleotide binding and hydrolysis and distinct sets of interdomain interaction...

متن کامل

Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis.

TRAP1 (TNF receptor-associated protein), a member of the HSP90 chaperone family, is found predominantly in mitochondria. TRAP1 is broadly considered to be an anticancer molecular target. However, current inhibitors cannot distinguish between HSP90 and TRAP1, making their utility as probes of TRAP1-specific function questionable. Some cancers express less TRAP1 than do their normal tissue counte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 53 2  شماره 

صفحات  -

تاریخ انتشار 2014